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An interactive tool for Bayesian inference

G. S. Cunningham, K. M. Hanson, G. R. Jennings, Jr., and D. R. Wolf

Los Alamos National Laboratory, MS P940
Los Alamos, New Mexico 87545 USA

ABSTRACT

The Bayes Inference Engine (BIE) is a flexible software tool that allows one to interactively define
models of radiographic measurement systems and geometric models of experimental objects so
that the geometric properties of the objects being radiographed can be inferred from a limited
amount of data. The BIE also allows a user to investigate confidence intervals on the estimated
object geometry and compare the likelihoods of competing hypotheses. The BIE contains three
components: a graphical programmer for defining and interacting with the measurement system
model, a geometric modeler for defining and interacting with the object model, and an interactive
optimizer. This article contains a description of these three components and an example of 2D
geometry optimization from synthesized radiographic data using the BIE.

Keywords: object-oriented modeling/programming, graphical programming, optimization, adjoint
differentiation, Bayesian inference, tomographic reconstruction, geometric modeling

1. BACKGROUND
1.1. The Traditional Approach to Data Analysis

The traditional approach to data analysis starts with a “measurement model” H that describes how
the data are obtained, on average, from a parameterization x of the object of interest. For example,
Fig. 1 contains a simple radiographic measurement model that consists of a line integral transform
A followed by exponentiation B and convolution C. Thus, given an object parameterization, one
can calculate the data y = H(z) = C(B(A(x))) that are predicted by the measurement model.

The measurement model can also be used to invert the data d to obtain an estimate of object
parameters, & = H'(d). For example, one can deconvolve radiographic data, take the logarithm
of the result, and finally perform an inverse Radon transform to obtain a pointwise estimate of the
attenuation profile for a 2D object, & = A~ (B~HC~(d))).

One problem with the traditional approach to data analysis is that the object parameterization
must be such that the inverse of the measurement model is well-defined. For example, if only one
radiographic projection of a 2D object is available, then a circularly-symmetric parameterization
of the object must be used to invert the measurement model (using the inverse Abel transform).
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Figure 1. A data-flow diagram for a simple measurement model for a radiographic system con-
sisting of, from left to right, an image describing a density distribution, line integrals through that
image, and negative exponentiation.

For complicated measurement models, though, it may not be easy to define a nice parameterization
that allows the inverse to be well-defined.

Another problem with the traditional approach to data analysis is that no confidence intervals
can be calculated to express the degree of certainty one should have in the estimated object pa-
rameters. That is, if x is a discrete attenuation profile in a 2D slice of an object and x;; is the
attenuation at a particular location, then the traditional approach to data analysis cannot answer
a question like, “what is the probability that a; < x;; < a9?” Finally, the traditional approach
does not allow one to evaluate competing hypotheses for explaining the data. That is, one cannot
get answers to questions like “what is the likelihood that the attenuation profile of the object is
constant in this region compared to the likelihood that it is constant with a flaw of this character?”

1.2. The Bayesian Approach to Data Analysis

The Bayesian approach to data analysis solves many of the problems associated with the traditional
approach. The data vector predicted by the measurement model y is coupled to the measurement
data d through a likelihood function ¢(y,d) = ¢(H(z),d). ¢(H(zx),d) is the probability that the
data obtained in an experiment would be equal to d given that the object has parameter values x.
Thus, ¢ contains a complete description of the noise in the measurements. If the noise is additive,
then d = y +n and ¢(H(z),d) = P,(d — H(x)), where P,(-) is the probability distribution of the
noise n.

Maximizing ¢(H(x),d) over all permissible x given the data d yields a maximum-likelihood
estimate (MLE) 2. If we have a prior probability distribution on z, say from a previous experiment
or other measurements, then we can maximize the posterior probability distribution ¢(H (x),d)II(x)
over all permissible z, given the data d, to produce a maximum a posteriori (MAP) estimate Z. In
either case, T contains the most likely values of the object parameterization given the data.

Note that the Bayesian approach only requires one to maximize ¢(H (x),d) or ¢(H (x), dd)II(z),
which does not require one to know H~!. Furthermore, the Bayesian approach allows one to make
probabilistic statements about the estimate . For example, one can ask “what is the probability
that a1 < z;; < ae?” or “what is the likelihood that the attenuation profile of the object is constant
in this region compared to the likelihood that it is constant with a flaw of a specified character?”
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The major problems associated with the Bayesian approach are the details of how to implement
the optimization of the likelihood or posterior: 1) the likelihood and/or posterior may be highly
nonlinear in the object parameterization = so that a global optimization is very difficult (there
may be many local minima) 2) the dimension of x may be very large, making a gradient-based
approach to optimization essential. Note that the latter problem also makes hypothesis testing
more difficult, as one may find it difficult to formulate competing hypotheses that provide insight
into the reliability of the estimates.

2. THE BAYESTIAN INFERENCE ENGINE
2.1. BIE Design Goals

The BIE is our attempt to provide a software tool that solves the implementation problems associ-
ated with the Bayesian approach to data analysis.

There are two principles that guide us in developing the BIE. First, the tool should allow the
user a high degree of graphical interaction with the measurement model and the object parame-
terization. This user interaction is necessary for easily controlling the complexity of the models
(for global optimization) as well as for interrogating them in intuitive ways (for investigating the
reliability of the estimate and intermediate predicted data). Second, the software should be writ-
ten in an object-oriented (OO) language to maximize our productivity and provide the foundation
for a flexible and extendable software package. These two principles guided our decision to use
ParcPlace’s VisualWorks application development environment and the OO language Smalltalk-80.
VisualWorks allows the application developer to call C and C++ subroutines easily, which we need
to do for computationally intensive work.

There are three components of the BIE that will be discussed in more detail: 1) the graphical
programmer, which allows a user to graphically define and interact with a measurement model
y = H(x), 2) a geometric object manipulator, which allows a user to define and interact with
geometric paramterizations of an object or collection of objects, and 3) an optimizer, which allows
a user to coordinate the global optimization of a likelihood or posterior with respect to user-selected
object parameters and get feedback on the progress of the optimization.
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Figure 2. The canvas for the graphical programming tool showing, from left to right, a density
image, projection transform, negative exponentiation, and convolution (to include detector blur).
The icon labeled ® computes the minus-log-likelihood from the inputs of the actual data (topmost
icon) and the data calculated by the radiographic simulation model. The lower right icon is the
Optimizer, which minimimes the output of the ® box with respect to the image on the left.

2.2. The Measurement Model

Figure 2 shows a canvas on which a simple radiographic measurement system has been modelled
using the graphical programming tool [1]. The tool allows a user to create, connect, delete, and
reorganize icons that represent Transform objects. The lines between icons represent Connector
objects that are capable of passing data forward and backward. Parameter objects have no in-
put and a single output. Intermediate predicted data can be generated and viewed by telling
any Transform to “generateQutput” and “displayOutput”, resp.. These messages are passed
backward by the Connectors until a Parameter is reached and returns itself, the recursively trans-
formed result eventually propagating backward to the initiating Transform. Similarly, the gradient
of a Parameter with respect to a Likelihood object can be obtained by telling the Parameter to
“generateAdjointOutput”. This message is passed forward by the Connectors until a Likelihood
object is reached and returns the gradient of itself with respect to the predicted data, the trans-
formed adjoint result eventually propagating back to the initiating Parameter. Thus the graphical
programming tool can be used to construct a potentially complex measurement system H and likeli-
hood ¢ acting on a parameterization x. Furthermore, the Parameters, Connections and Transforms
are sophisticated enough so that ¢ and the gradient of ¢ with respect to any Parameter can be
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Figure 3. The canvas for the graphical programming tool showing, from left to right, a density
image, projection transform, negative exponentiation, and convolution (to include detector blur).
The icon labeled ® computes the minus-log-likelihood from the inputs of the actual data (topmost
icon) and the data calculated by the radiographic simulation model. The lower right icon is the
Optimizer, which minimimes the output of the ® box with respect to the image on the left.

computed.

2.3. The Geometric Object Manipulator

Figure 3 shows a BIE canvas on which a 2D geometric model of an experimental object has been
constructed. Objects can be composed of many parts, each of which can have any one of several
geometries, including UniformGrid2D, Grid2D, Polygon2D, and PiecewiseBezier2D. Object parts
can be deleted, translated, resized, and modified appropriately in an interactive way. The values
associated with UniformGrid2D and Grid2D can be seen in a grayscale image and manipulated with
another tool. All geometric parts can be deformed using piecewise Bezier 2D warps. Contour plots
of a Grid2D can be automatically refreshed as the Grid2D is interactively deformed. The geometric
modeller is called when a GeometricObjectParameter is told to display itself (from the graphical
programming tool).

2.4. The Optimizer

A wuser can tell a Parameter to be optimizable by connecting the Parameter icon to the Optimizer
icon, of which there is usually only one on the graphical programming canvas. The code used
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Line minimization parameters

Line minimization tolerance [ oor Effect of step size
Maximum iterations in line minimization [ 10
Line minimization step size W Eletkclihond
Total line minimization steps so far ﬁ
Global search parameters
Global search type [ Conjugate gradient
Constraints: & Non-negativity
Maximum number of global search steps lii
Total global search steps so far liﬂ Reset step totals
Current value of likelihood ,W
Estimated minimum value of likelihood 0.01 Optimize

Figure 4. The user interface for the Optimizer.

by the Optimizer is abstract [2] in the sense that the Parameters it optimizes are not typecast,
and details about the gradient calculation are not known by the Optimizer (this is the respon-
sibility of the Parameters, as discussed above). Parameters also know how to multiply them-
selves by scalars, add themselves to a like-structured Parameter, find their inner-product with a
like-structured Parameter, etc. The Optimizer uses the abstract vector-space operations, whose
implementation is Parameter-dependent, to conduct constrained and unconstrained optimization
using gradient descent, conjugate-gradient, and Powell’s algorithms. Several line-search strategies
have been investigated, including golden-section, polynomial fit, and a hybrid approach using both
golden-section and quadratic fit. The user is presented with an interface that contains the important
attributes of the optimization (see Fig. 4). The user can plot the effect of stepping in the current
gradient direction on the optimizable Parameters. The user can also plot the likelihood as a func-
tion of step size along the gradient direction. Intermediate predicted data and the current state of
the object model are always accessible during any optimization using the graphical programming
tool and the geometric modeller.

3. EXAMPLE
3.1. 2D Limited View Tomography

Figure 5(a) contains the geometry of the original attenuation profile, which is an annulus with
an interior flaw. The inner radius of the annulus is 1 cm, the outer radius is 2 cm, and the
attenuation value in the annulus is 1 cm™!. The graphical programming tool is used to create the
four noisy, simulated radiographic projections in Fig. 5(b) of the attenuation profile in Fig. 5(a).
Each projection has 64 bins and a physical width of 5 cm. Random Gaussian noise with an rms value
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Figure 5. (a) The original geometry: a 100-vertex polygonal approximation to an annulus with a
large flaw on the interior. (b) The simulated vertical projection of the geometric object in Fig. 5(a).
(¢) The reconstructed geometry using a 50-vertex polygon with initial configuration equal to the
unflawed annulus.

of 0.05 has been added to these simulated measurements, which represents a SNR of % =64 =18
dB. The estimate in Fig. 5(c) is the result of optimizing the 50 vertices of a polygon with initial
vertices lying on the unflawed annulus.

4. CONCLUSIONS AND FUTURE DIRECTIONS

The BIE is already a powerful tool for 2D geometry optimization, reliability investigation, and
hypothesis testing; however, there are many unexplored avenues we intend to pursue. Two goals
that we will be pursuing this year are extending the optimization capability of the BIE to more
complex geometry and exploiting the BIE’s interactivity to investigate global optimization strategies
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that control the complexity of the object and measurement system models. We aim to eventually
optimize 3D CAD geometry descriptions to fit limited radiographic data.
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